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constant for a given angular displacement from the ro- 
tation plane. This result reduces to the kind of toroidal 
rotation discussed previously when the projection of 
the rotation plane lies on the primitive, and to an or- 
dinary rotation when it is a diameter of the primitive. 

Conclusion 

The properties of the hyper-stereogram that have been 
described provide the necessary groundwork for its use 

in the description of four-dimensional crystallographic 
symmetry, and this will be discussed in the following 
paper (Whittaker, 1973). 
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The symmetry elements of the four-dimensional hyper-cube are represented in a hyper-stereogram. 
This is used to classify the special and general directions in holosymmetric hyper-cubic symmetry. Pro- 
jections of the hyper-cube in these various directions are constructed, with the incorporation of colour 
perspective, and the two-colour Shubnikov symmetry of these projections is tabulated and related to the 
four-dimensional symmetry elements on which the projection directions lie. The general representation 
of other four-dimensional symmetry elements in the hyper-stereogram is discussed, and the convenience 
of the hyper-stereogram for facilitating the evaluation of the matrices of symmetry operations in non- 
standard orientations is demonstrated. 

There has recently been much development in the the- 
oretical understanding of four-dimensional crystal- 
lography and in the derivation of the four-dimensional 
crystal classes (e.g. Belov & Kuntsevich, 1971; Neu- 
biiser, Wondratschek &Biilow, 1971a, b, c and refer- 
ences therein). This work has been done in terms of the 
matrix representations of symmetry operations, but it 
is of some interest to be able to visualize the geomet- 
rical relationships of the corresponding four-dimen- 
sional symmetry elements just as we do in three dimen- 
sions, especially for the higher-symmetry crystal 
classes. The possibility of doing this conveniently is 
provided by the hyper-stereogram (Whittaker, 1973). 

1. Nomenclature 

The nomenclature of four-dimensional symmetry op- 
erations has hitherto been in terms of arbitrary letters 
(Hurley, 1951), the parameters of the characteristic 
equation of their matrices (Hurley, 1951), a sequence 
of up to four symbols representing the multiplicities of 
their irreducible components (Hermann, 1949), or a 
pair of (Cyrillic) letters indicating the general nature of 
the operation qualified by numerical subscripts (Kunt- 
sevich & Belov, 1968). Since the numerical subscripts of 
Kuntsevich & Belov are all different they suffice as 

symbols in their own right. This not only simplifies the 
nomenclature, but also clarifies the relationship of the 
four-dimensional symmetry operations and elements 
to those in three dimensions. 

In order to avoid ambiguity in this relationship it is 
however necessary to make two minor changes. The 
subscripts ~ of Kuntsevich & Belov are combinations 
of an n-fold rotation with a mirror reflexion, and are 
related to three-dimensional n-fold rotation-reflexion 
axes, not n-fold rotation-inversion axes. They have 
therefore been changed in this paper to if, and this 
nomenclature is also used for three-dimensional rota- 
tion-reflexion axes to distinguish them from ~-rota- 
tion-inversion axes. The other change arises because 
Kuntsevich & Belov retained Hermann's nomenclature 
of 5 and 10 for the pentatope, and a related, operation. 
To make clear the distinction from the non-crystal- 
lographic fivefold and tenfold rotation planes these 
have been replaced by V and X. 

2. The hyper-stereogram of the hyper-cubic 
holosymmetry 

The hyper-stereogram is shown, as a stereo pair, in 
Fig. 2. The nomenclature of the axes of Fig. 2 is shown 
in Fig. 1. Planes of rotation symmetry project in the 
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hyper-stereogram as lines, and are distinguished both 
by cross section and colour as follows: projections of 
fourfold planes are shown by square-section bars in 
red, those of threefold planes by round rods in yellow, 
and those of twofold planes by flat strips in blue. 

The fourfold rotation planes of the hyper-cube lie in 
the six axial planes defined by taking all possible com- 
binations of the axes two at a time, and constitute three 
pairs of planes whose members are absolutely perpen- 
dicular, namely wx, yz; wy, zx; and xy, zw. In the hyper- 
stereogram the first member of each pair appears as 
one of the three axial great circles W X W ' X ' ,  W Y W '  Y', 
X Y X ' Y '  of the primitive, and the second member as 
the diameter of the primitive perpendicular to it. 

There are 36 twofold rotation planes which occur in 
two groups. In the first group, of 24, each contains one 
of the axes and a line lying in the plane of two other 
axes and bisecting the angle between them. These are 
represented by: 

(i) Six great circles of the primitive bisecting the 
angles between the axial planes. These represent the 
twofold rotation planes each containing one of the 
axes w, x, y and a line bisecting the angle between the 
other two. 

Fig. 1. Nomencla ture  of the axial points in Fig. 2. 

A A 

B D 

c D 
C 

(a) (b) 

Fig.3. Nomencla ture  of the representative te trahedron out- 
lined in white in Fig. 2: (a) oriented as in Fig. 2; (b) oriented 
as in Fig. 7. 

(ii) Six diameters of the primitive lying in the axial 
planes and bisecting the angles between the axes. These 
represent the twofold rotation planes containing the z 
axis. 

(iii) 12 'great circles' (in the sense in which this term 
is used in the ordinary stereogram) lying in the axial 
planes, passing through opposite ends of one axis and 
intersecting the perpendicular axis at a point 45: (in 
terms of the Wulff net) from the centre. These represent 
twofold rotation planes each containing one of the 
axes w, x, y and a line bisecting the angle between the z 
axis and one of the other two. 

In the second group of 12, each contains a line bi- 
secting the angle between two of the axes and a line 
bisecting the angle between the other two. They are re- 
presented by 'great circles' lying on the planes bisecting 
the angles between the axial planes of the hyper-stereo- 
gram, and passing through the ends of the diameter in 
(ii) above and the point 45 ° from the centre (in terms 
of the Wulff net) along the perpendicular (axial) diam- 
eter. 

The 16 threefold rotation planes* each contain one 
of the w, x, y, z axes and a line equally inclined to the 
other three. Those which contain the z axis are repre- 
sented by diameters of the primitive and intersect it at 
a point in the centre of each axial octant. The four that 
contain the w axis lie in the planes bisecting the angle 
between the W X  and W Y  planes and pass through the 
point on the X Y  plane equidistant (in terms of thc 
metric of the Wulff net) from Z and one end or other 
of XX' ,  YY ' .  Similar descriptions apply, mutatis mu- 
tandis, to the representations of the other threefold ro- 
tation planes that contain either the x or y axis. 

The mirror hyper-planes are represented in the 
hyper-stereogram by spherical or planar surfaces. 
These are not shown directly in Fig. 2 as they would 
obscure other parts of the model, but their locations 
are easily recognised because the representations of the 
planes of rotation symmetry form networks upon 
them. The 16 mirror hyper-planes may be conveniently 
divided into the following groups: 

(i) One containing the w, x, and y axes is represented 
by the primitive. 

(ii) The three that contain the z axis and two of the 
w, x and y axes are represented by the axial planes of 
the hyper-stereogram. 

(iii) The six that contain the z axis, one of the w, x 
and y axes, and a line bisecting the angle between the 
other two, are represented by the planes bisecting the 

* The combination of these threefold rotation planes with 
the 22 symmetry point that is also present actually leads to 62 
double-rotation operations. The orientation of these could be 
represented by a combination of virtual 6"-fold rotation planes 
in place of the threefold planes, combined with virtual twofold 
rotation planes absolutely perpendicular to them. Hove'ever the 
description of threefold planes is simpler. The situation is 
analogous to the conversion of a threefold rotation axis to a 
rotation-inversion (6 rotation-reflexion) when combined with 
a centre of symmetry. 
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angles between the axial planes of the hyper-stereo- 
gram. 

(iv) The six that contain two of the w, x, and y axes 
and a line bisecting the angle between the remaining 
one of these axes and the z axis, are represented by 
'great spheres' whose geometric centres lie on the 
primitive. 

Each of the surfaces in (i) and (ii) contains the repre- 
sentations of three fourfold planes (red) and six two- 
fold planes (blue), while each of the surfaces in (iii) 
and (iv) contains the representations of one fourfold 
plane (red), four threefold planes (yellow) and four 
twofold planes (blue). 

The representation of symmetry elements other than 
rotation planes and mirror hyper-planes will be dis- 
cussed in § 6. 

It may be noted that the axial planes of the hyper- 
stereogram look very like the ordinary stereogram of 
the symmetry elements of cubic holosymmetry, with 
the symmetry planes of the latter replaced by the rep- 
resentations of fourfold and twofold rotation planes. 
A more exact anaology in fact exists. All the symmetry 
elements on the stereogram of cubic holosymmetry 
(twofold, threefold and fourfold rotations and mirrors) 
correspond in nature and position to the symmetry 
elements that intersect an axial plane of the hyper- 
stereogram perpendicularly. 

3. The representative tetrahedron 

A representative tetrahedron is outlined in white in 
Fig. 2. This representative tetrahedron is repeated by 
the symmetry and occurs 192 times within the primitive. 
Allowing for the mirror hyper-plane represented by 
the primitive, a general position therefore occurs 384 
times. The positions to which a general point is repeated 
may be deduced in detail by application of the con- 
structions for reflexions in hyper-planes and rotations 
about planes discussed in the previous paper (Whit- 
taker, 1973). 

The representative tetrahedron is redrawn in Fig. 
3(a) and its vertices lettered for reference. The position 
of a point within or on it may be specified as (hlh2hah4), 
where the values of/7 may be construed (if integral) as 
the indices of a crystallographic hyper-plane, or more 
generally a vector in R4. {hthzhah4} then represents a 
crystallographic form or the set of symmetry related 
vectors. 

Each face of the tetrahedron lies on the representa- 
tion of a mirror hyper-plane. If the point (h~h2hah4) lies 
on a face its multiplicity is reduced to 192 and the 
vector takes one of the following forms: 

on ABC: {hlhEh2h4} with the smallest [h[ repeated; 
on A BD: {hthlhzh4} with the intermediate ]h] re- 

peated; 
on ACD: {hlh2h3h~} with the largest [hi repeated; 
on BCD: {hlh2Oh4}. 
If the point lies on one of the edges of the tetrahedron 

the multiplicity is further by reduced the order of the 

symmetry element on that edge, and takes the following 
forms" 

AB 64 {hlh:hlh4} 
AC 96 {hlhzhzhl} 
AD 64 {hlhlh3hl} 
BC 48 {hl00h4} 
BD 96 {h~h~Oh4} with [hl[<lh4[ 
CD 96 {h~h2Oh~} with [h~[>lh21 • 

If the point lies at a vertex the following cases arise" 
A 16 {1 1 1 1} 
B 8 { 0 0 0  1} 
C 24 {1 0 0 1} 
D 32 {1 1 0 1 } .  

4. Projections with colour perspective 

All the information about a four-dimensional geo- 
metric figure can be represented in three dimensions 
provided that some continuously variable parameter, 
proportional to the fourth coordinate (perpendicular 
to the other three) can be associated with each point. 
An obvious possibility for the required parameter is a 
continuous colour change which is an extension of the 
use by Mackay & Pawley (1963) o fp  colours to repre- 
sent points at p levels. The principle is conveniently 
demonstrated by applying it to the representation of a 
cube in two dimensions. Fig. 4 shows seven projections 
of a cube; the projection directions map at the vertices, 
on the edges, and within, the representative triangle 
(shown by bold lines) on the inset stereogram of the 
symmetry elements of the cube. The projections are 
arranged relative to one another in accordance with 
the position on the representative triangle of the map- 
ping of their respective projection directions. 

A continuously variable colour parameter, ranging 
from orange-red, through yellow and green, to blue, is 
assigned to each point of a projection corresponding 
to the distance of the corresponding point of the cube 
from the observer in the third dimension perpendicular 
to the plane of the projection. This spectral sequence 
was chosen to give some correspondence to the usual 
'blueing with distance' that is the basis of colour per- 
spective in landscape painting. In cases when two edges 
of the cube map on to the same line in projection, and 
the appropriate colour coordinates are equally and 
oppositely displaced from the mid-green, the line is 
shown in grey. 

Fig. 5 and Fig. 6 show similarly coloured three- 
dimensional models of the four-dimensional hyper- 
cube. Fig. 5 is the projection down a [1111] direction 
(vertex A of the representative tetrahedron of Fig. 3), 
and Fig. 6 is the projection down a general direction 
that maps in the interior of the representative tetra- 
hedron. 

There are in all 15 different kinds of projection of the 
hyper-cube, corresponding to the positions in the re- 
presentative tetrahedron at which the projection direc- 
tion may map, as listed in § 3. The models of all these 
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Fig.2. The hyper-stereogram of the hyper-cubic holosymmetry. Square section (red) represents fourfold rotation planes; round 
section (yellow) represents threefold rotation planes; flat section (blue) represents twofold rotation planes. A representative 
tetrahedron is outlined in white. 

Fig.4. Projections of the cube, with a colour parameter (red, through yellow and green, to blue) to represent increasing distance 
perpendicular to the projection plane. The seven projection directions are indicated by corresponding points on the heavily 
outlined representative triangle in the stereogram of the cubic holosymmetry. 

To face p. 680 
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projec t ions  are shown in Fig. 7 a r ranged  relative to one 
ano the r  in accordance  wi th  the pos i t ion  in the repre- 
sentative t e t r ahedron  [oriented as in Fig. 3(b)] o f  the 
mappings  of  their  respective pro jec t ion  directions.  

5. Symmetry of the projections 

A l t h o u g h  the d iagrams of  Fig. 4 and the models  of  
Fig. 7 are mul t ico loured ,  their  symmet ry  can be con- 
sidered in terms of  the Shubn ikov  two-co lour  po in t  
groups :  change  of  co lour  is unde r s tood  as an inversion 
between two colour  values equal ly separated to the 
orange  and  blue sides of  mid-green.  

It  is evident  f rom Tables  1 and  2 tha t  there is a close 
re la t ionship  between the co lour  symmet ry  o f  a projec- 
t ion and  the symmetry  elements on which the projec- 
t ion direct ion lies, but  this re la t ionship  is not  entirely 
s t ra ight forward .  The mat te r  can be e lucidated fur ther  
for individual  c rys ta l lographic  symmet ry  opera t ions  by 
repetit ive mul t ip l ica t ion  of  an a rb i t ra ry  vector  by the 
matr ix  of  the symmet ry  opera t ion .  I f  the set o f  values 
of  any c o m p o n e n t  (or any subset o f  it) remains  un- 
changed in magni tude ,  this indicates a re levant  projec- 
t ion direct ion.  For  projec t ions  f rom R3 to R2 this re- 

Table  1. Colour point groups o f  the projections o f  a 
cube in Fig. 4 compared with the symmetry elements 

on which the projection direction lies 

A is taken as the position on the stereogram of the 3 axis and 
B of the 4 axis. 

Three-dimensional symmetry elements 
coincident with projection direction 

At A 3 axis (6") axis); three m planes 
B 4 axis; four m planes 
C 2 axis; two in planes 

On AB m plane 
BC nl plane 
CA tit plane 

In ABC T centre (also present in all) 

Two-dimen- 
sional colour 

point group of 
projection 

6 ' m  lll  t 

4 in m (grey) 
2 m tit (grey) 

Dt Dl" 

t i t  m' 
l?l I?lt 

2" 

veals the re la t ionships  shown in Table  3 f rom which it 
can be seen tha t  pro jec t ion  direct ions  perpend icu la r  to 
symmet ry  elements  may also result in symmet ry  in the 
project ion.  The reason for this is tha t  symmet ry  in the 
pro jec t ion  can arise not  only  when the direct ion of  
p ro jec t ion  is t ruly invar ian t  under  the symmet ry  opera-  
t ion but  also when it is merely conf ined to a line or a 
plane.  

Table  3. Two-colour two-dimensional symmetry in 
projections (with colour perspective) o f  three- 

dimensional symmetry elements 

Symmetry Projection Projection 
element parallel perpendicular 
along z to z to z 

In (Zz) grey m ( / z )  
2 2 m (iiz) 
3 3 - -  

i 4 4 m (~ z) 
6 6 m (!lz) 

(1) 2" 2" 
3" (~) 3 grey m (3_ z) 

(2[) 4' rn'(i;z) 
6 (3) 6' 2" 

Table  4 gives the co r re spond ing  re la t ionships  for  
pro jec t ion  f rom R4 to R3 of  all the 23 crys ta l lographic  
symmet ry  opera t ions  o ther  than  the identi ty.  Here, ex- 
tended cond i t ions  become even more  i m p o r t a n t  be- 
cause for many  of  the symmet ry  opera t ions  the only  
invar ian t  symmet ry  e lement  is a point ,  but  there may 
nevertheless be a n u m b e r  of  project ion direct ions  in 
which some symmet ry  is retained.  

The  results in Tables  1 and  2 can all be explained in 
terms of  Tables  3 and  4 with three exceptions.  The  
first of  these is the presence of  4' axes in pro jec t ion  A 
of  Table  2, which cor responds  to the model  of  Fig. 5. 
These 4' axes are due to the existence of  co inc ident  
symmetry  elements a long each of  the eight d iagonals  

of  the hyper-cube.  These are the invar ian t  lines of  2, 
symmetry  operat ions .  No symmetry  axes were repre- 

Table  2. Colour point groups o f  the projections o f  a hyper-cube in Fig. 7 compared with the four-dimensional 
symmetry elements on which the projection direction lies 

3D colour point 
4 D symmetry elements coincident with projection directions group of model 
At A four 3 planes" three 2 planes; six m hyperplanes. 4'3 2' 

B three 4 planes" four 3 planes; six 2 planes" nine nt hyperplanes, m3m grey (4/m 6 2/m) 
C one 4 plane" four 2 planes; five m hyperplanes. 4/m nl Itl (grey) 
D one 3 plane; three 2 planes; four m hyperplanes. 6"/m m'm 

On AB one 3 plane; three tit hyperplanes. 3'm ('6"m) 
A C one 2 plane; two in hyperplanes. 2/nl"m in 
AD one 3 plane" three m hyperplanes. 3"in ('6"nl) 
BC one 4 plane; four t71 hyperplanes. 4/m'm nt 
BD one 2 plane" two m hyperplanes. 2/mtm lit 
CD one 2 plane" two m hyperplanes. 2/ln'm tit 

On A BC one m hyperplane. 2"/m 
DAB one m hyperplane. 2'/m 
CDA one in hyperplane. 2"/m 
BCD one in hyperplane. 2"/m 

In ABCD tile 22 double rotation (also present additionally on all the others) T'('2') 

A C 2 9 A  - 7 



ACTA C R Y S T A L L O G R A P H I C A ,  VOL. A29, 1973 WHITTAKER PLATE 45 

Fig. 5. Projection of the hyper-cube down a direction making equal angles with the four axes. The colour parameter (red, through 
yellow and green, to blue) represents increasing distance perpendicular to all three dimensions of space. 

Fig. 6. Projection of the hyper-cube in a general direction (with colour perspective). 

Fig.7. Fifteen projections of the hyper-cube (with colour perspective). The projection directions are indicated by corresponding 
points on the white representative tetrahedron in the hyper-stereogram of Fig. 2. 
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sented in the hyper -s te reogram of  Fig. 2 but  we can 
now see tha t  this should  have been done  at the inter- 
sections in each oc tan t  of  the four  representa t ions  of  
threefold  planes.  For  reasons tha t  will appear  in the 
next section, a suitable representa t ion  would  be an 
out l ine  t e t r ahedron  su r round ing  each of  these eight 
points ,  with the representa t ions  of  the threefold planes 
emerging a long its threefold  axes. This  would correct ly 

represent  the nature  and  or ien ta t ion  of  the 4 symmetry  
axes, and  would fur ther  enhance  the ana logy  of  Fig. 2 
to the classical s tereogram of  cubic ho losymmet ry .  

The second exception is the presence of  3 axes (6 
axes) in the grey cube of  pro jec t ion  B. This  is due to 
the presence of  four  coincident  symmet ry  axes of  type 

a long [0001] (and related axes). These should similarly 
be represented by an out l ine  cube su r round ing  the rele- 
vant  points  in the hyper-s tereogram.  The  third  excep- 
t ion is the presence of  a 6' axis in the pro jec t ion  at  D. 
This  arises because the combina t i on  of  the 3 p lane  
a long A D ,  the perpendicular  m hyper -p lane  in B C D ,  

and the 22 symmetry  poin t  give rise to a 6 axis at D. 

6. T h e  representat ion  o f  s y m m e t r y  a x e s  

It has been possible to deduce directly f rom the pre- 
ceding paper  (Whi t taker ,  1973) how to represent  not  
only the symmetry  elements  of  mi r ror  hyper-p lanes  and  

n-fold ro ta t ion  planes,  but  also the effect o f  their  opera- 
t ion.  However ,  these symmet ry  elements co r respond  
to only nine of  the 23 crys ta l lographic  symmet ry  opera-  
t ions (other  than  the identi ty)  tha t  exist in R4. There  
are a fur ther  four  symmetry  opera t ions  tha t  have an 
invar ian t  line, and  whose symmet ry  e lement  is there- 

fore an axis. These are 2, 4, 3 and  6 axes. Each may be 
regarded as a p roduc t  o f  two opera t ions  M134.[ : t tz  , 
where R is a ro ta t iona l  symmet ry  opera t ion  (of  appro-  
pr iate  order),  M is a reflexion opera t ion ,  and the sub- 
scripts denote  four  o r thogona l  directions,  o f  which 1 
specifies the invar ian t  axis o f  the whole  opera t ion ,  1 
and 2 together  define the invar ian t  p lane of  R, and 1, 3 
and  4 the hyper-p lane  of  M. 

It is therefore evident  tha t  such a symmet ry  e lement  
can be represented by a po in t  in the hyper-s te reogram 
and  its opera t ion  can be defined geometr ical ly  by a 
comb ina t i on  of  a ro ta t ion  abou t  the line represent ing 
the ro ta t ion  p lane  of  F! and  a reflexion in the surface 
represent ing the mi r ror  hyper -p lane  of  M, as defined 
in the preceding paper  (Whi t taker ,  1973). In a simple 
case where the axes 1, 2, 3, 4 coincide with some per- 
mu ta t i on  of  w, x, y, z there would  be little difficulty in 
ident i fying such opera t ions  in the hyper-s tereogram,  

but  in the case of  the Y, axes discussed in the previous  
section the direct ions  of  the axes 2, 3, 4 are by no 
means  obvious.  However  reference to the hyper-s tereo-  
gram greatly simplifies the p rob lem.  

Table  4. T w o - c o l o u r  t h r e e - d i m e n s i o n a l  s y m m e t r y  in  p r o j e c t i o n s  ( w i t h  c o l o u r  p e r s p e c t i v e )  o f  f o u r - d i m e n s i o n a l  s y m -  

m e t r y  e l e m e n t s  

Projection direction 
Symmetry element '.'~z Ily In y z  In w x  _Lz _Ly General 

m (J_z) grey * - * m(_Lz) - - 
2 ( y z )  * * 2 (in y z )  m" ( y z )  - - - 
3 ( y z )  * * 3 (in y z )  . . . .  
4 ( y z )  * * 4 (in y z )  m" ( y z )  - - - 

6 ( y z )  * * 6 (in y z )  m '  ( y z )  - - - 

(z with reflexion J_y) 2 (Y) * - * 2' (z) - - 
"3 (z with reflexion A_y) ~ (y) 3 grey(z) 3 (in y z )  * - m (J_y) - 

(z with reflexion J_y) 4 (y) 4' (z) 2 (in y z )  m" ( y z )  - - - 

(z with reflexion _Ly) 6 (y) 6' (z) 3 (in y z )  * 2' (z) - - 
22 ( y z - w x )  * * * * * * "~, 

32 ( y z - w x )  * * "3' (in y z )  2 (in wx) - - - 
42 ( y z - w x )  * * "4' (in y z )  m" ( y z )  - - - 

62 ( y z - w x )  * * 6" (in y z )  * * * "~" 
33 ( y z - w x )  . . . . . . .  

43 ( y z - w x )  * * 4 (in y z )  ~" (in wx)  - - - 
63 ( y z - w x )  - - 2 (in y z )  m" ( y z )  - - _ 

44 ( . v z - w x )  * * * * * * "~, 

64 ( y z - w x )  * * "J' (in y z )  4' (in w x )  - - - 

66 ( y z - w x )  * * * * * * "~" 

444 * * * * * * ~" 
3344 . . . . . . .  

V . . . . . . .  

X * * * * * * '2, 

Notes: (I) When a particular projection direction does not lead to any different symmetry from a more general projection direc- 
tion this is indicated by an asterisk" the symmetry arising is given by the first following positive entry. 

(2) The direction of an axis specified in columns 4 or 5 as 'in yz' or 'in wx' is the direction in the plane yz or wx perpen- 
dicular to the projection direction. 
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The symmetry operation involved arises (just like 
the 4 axis in the cubic class 432) by the combination of 
a threefold rotation plane with a mirror hyper-plane. 

Consider the threefold rotation plane along A B  
(Figs. 2 and 3) and the mirror hyper-plane through A 
that reflects Y to Z. The former clearly transforms 
(,1000) -+ (0100) --+ (0010) and leaves (0001) unchanged, 
so that the matrix of the ~, operation arising from their 
combination is evidently given by 

1000\ [0010\ /0010\ 
o oo/ / ooo/ / lOOO/ 
0001 / ~0100/--/O00 l / 
0010/ \000 / \0100/. 

It may readily be verified that this matrix is also the 
product of those corresponding to a virtual fourfold 
rotation plane along A C and a mirror hyper-plane 
containing the two other blue lines intersecting at A 
(Fig. 2). The effects of such operations can easily be 
seen from the hyper-stereogram to be: a fourfold plane 
along A C  transforms (0T00)~ (100T)~ (01T0) 
(TOO l )" the required hyper-plane passes through (1010), 
(1100) and (0110) and so transforms them to them- 
selves. These observations on the hyper-stereogram 
lead directly to the matrices 

/ I T l l \  [1 l IT\  
_,/!llTl , / ls l l /  
2~111_11 and 2~ITII/ respectively, and 

\1111/ \ ! I 1 1 /  

their product is the same as above. 
Thus each of the three 4 symmetry elements at A 

corresponds to a virtual fourfold rotation about one of 
the twofold rotation planes through A combined with 
a reflexion in the hyper-plane defined by the other two. 
The effect of this on a point in the hyper-stereogram is 
most simply described as a repetition at the vertices of 
a tetrahedron surrounding A, and tending to a regular 
tetrahedron centred on A as the points approach A. 

The derivation of the four coincident 6 axes along 
[0001] (and related axes) can be derived similarly. As a 
result of combining the threefold rotation plane along 
A B (whose matrix was derived above) with the three 
axial mirror hyper-planes that intersect it at B one 
obtains: 

T000\ [ 1000\ [ 1000\ 10010\ [00T0\ 
0100 / /OlO0l /0100 / /lO00 / /1000 / 
OOlO! lOOlO/ /oolo! /o oo/=/oToo/ 
0001 / \0001/ \0001 / \0001/ \0001/ 

which is in turn equivalent to a combination of a six- 
fold rotation about A B  and a mirror hyper-plane per- 
pendicular to it as shown by the product 

/1T]-_I0\ /22T0\ /00T0\ 
/2120/ / 1 2 2 0 / = / 1 2 0 0 /  

~'~2210] ~2T20] ~0100] 
\000 / \0001/ \0001/. 

7. The representation of point symmetry elements 

The remaining ten kinds of four-dimensional symmetry 
operation do not leave any vector invariant, and their 
symmetry element is therefore only a point at the ori- 
gin. However, this statement would also be true of ~- 
axes of symmetry in three-dimensional space, but ex- 
cept for ~--2 these nevertheless have a directional 
character and it is necessary t9 specify the direction of 
the axis of their rotational component. A similar need 
arises in four dimensions for the representation of the 
planes of component rotations. 

This need does not arise for the double rotation 22 
whose components are two absolutely perpendicular 
twofold rotation planes. Its effect is independent of the 
orientation of these planes and is simply to change the 
sign of all coordinates. Since a point at the centre of 
the hyper-sphere does not lie on its boundary it cannot 
strictly be represented on the hyper-stereogram. How- 
ever just as 2 is conventionally represented by an open 
circle at the centre of a stereogram, so the point in 
question could appropriately be represented by a 
small empty sphere at the centre of the hyper-stereo- 
gram. 

In all the other nine types of double rotation about a 
pair of absolutely perpendicular planes it is necessary 
to specify at least one of these planes. In a model hyper- 
stereogram containing them, they would obviously be 
represented in a similar way to true rotation planes but 
with some distinctive marking such as black bands. 
The triple rotation 444 similarly requires the specifica- 
tion of at least one of the two component virtual four- 
fold planes that are absolutely perpendicular to one 
another and of the third virtual fourfold plane perpen- 
dicular to both. In the hyper-stereogram the simplest 
example would be a great circle of the primitive, a 
diameter of the primitive perpendicular to this, and 
another great circle of the primitive through the ends 
of this diameter.* There are twelve differently orien- 
tated such symmetry elements in the symmetry of the 
hyper-cube arising from the actual fourfold planes that 
are present. The quadruple rotation 3344 analogously 
requires the specification of at least one of a pair of 
absolutely perpendicular threefold planes and at least 
one of a pair of absolutely perpendicular fourfold 
planes perpendicular to them. 

The pentatope operation (V) again has only a point 
symmetry element, but its orientation in the hyper- 
stereogram requires to be expressed in some way. 
Moreover it does possess a set of five vectors which is 
invariant as a set  and these serve to define its orienta- 

* This is sufficient to specify the or ientat ion provided  that 
a suitable convent ion  of  ro ta t ion  sense is adopted .  The three 
planes outl ine three edges of  the positive octant  of  the hyper-  
s te reogram that form an open figure. If  on proceeding f rom 
one end of  this figure to the other  the sense of  ro ta t ion  in the 
hyper-s tereogram always remains the same then there is a 1 : 1 
cor respondence  between the symmet ry  opera t ion  and the set 
of  three planes. 

A C 29A .- 7* 
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tion. It is therefore most conveniently represented in 
the hyper-stereogram by the projections of a set of five 
points equidistant from one another on the hyper- 
sphere at 2 tan -1 (['5/[/3) apart. The simplest orienta- 
tion which gives rise to the standard form (Mackay & 
Pawley, 1963), 

1 - 3  - 1  1'5 ¼ 
1 - 1  1/: 

-I//5 -1//5 l"5 
for the matrix, is a point at the centre of the hyper- 
stereogram together with four points tetrahedrally ar- 
ranged around it in the centres of the positive wxy 
octants at r =  I/'5/V 3. The effect of the V operation in 
the hyper-stereogram is most simply envisaged as a 
combination of a ~, rotation axis and a reflexion in a 
hyper-plane making tan -~ (1/5/1/3) with this axis. In 
the above case the 2, rotation axis would be the z axis, with 
its rotation component about the xz  plane, and the 

hyper-plane would be equally inclined to the w, x and 
y axes. 

The X operation can similarly be represented by the 
same five points together with their opposites. 
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Neutron-Diffraction Study of Tb(OH)3- A Case of Severe Extinction* 
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Neutron-diffraction experiments on a single crystal of Tb(OH)3 have indicated severe extinction effects. 
For some Bragg reflections the observed neutron cross section is attenuated by a factor of ten owing to 
extinction. A least-squares refinement (including extinction) of the structure factors deduced from inte- 
grated intensities measured at room temperature gives structural parameters in good agreement with a 
previous determination, and new information about the position and thermal vibrations of the hydrogen 
atom. The final residual of 0.036 indicates that extinction is well accounted for by the Zachariasen for- 
mulae, and the value of g, the extinction parameter, is (6+ 1)x 104. The polarized-neutron technique 
has been used to measure the ratio between the magnetic and nuclear structure factors at 2-6°K, at 
which temperature Tb(OH)3 is ferromagnetic (9/tB/Tb atom). The effect of extinction is particularly 
dramatic in this experiment, but again the results may be explained with thesimple Zachariasen correction 
and the same extinction parameter as used for the unpolarized data. The corrected magnetic scattering 
amplitudes deduced from the polarized-neutron experiment allow the magnetic form factor of the terbium 
atom to be found, and compared to that measured in terbium metal; this aspect of the investigation is 
discussed in a separate article. 

Introduction 

The problem of extinction in experiments concerned 
with measuring Bragg intensities in both X-ray and 
neutron diffraction has received much attention over 
the last few years. Recognized in the very early days of 
crystallography by Darwin (see James, 1958) extinction 
results in the stronger Bragg intensities appearing 
weaker than predicted by the kinematical theory. Ex- 
periments aimed at determining crystal structures are 

* Work performed under the auspices of the U.S. Atomic 
Energy Commission. 

somewhat independent of this problem, since the 
stronger reflections are often disregarded in the refine- 
ments, and the correlation between the extinction and 
the final positional parameters is usually small. The 
most thorough treatment of extinction has been for- 
mulated by Zachariasen (1967, 1968a, 1968b). Despite 
doubts about the mathematical treatment (Werner, 
1969), and the physical significance of the final param- 
eters (Lawrence, 1972; Killean, Lawrence & Shar- 
ma, 1972), the Zachariasen theory has found wide ac- 
ceptance among experimentalists, and is now routinely 
included in least-squares refinements of the structural 
parameters. Second-order corrections in the form of 


